

Introduction to Mathematical Quantum Theory

Text of the Exercises

– 14.04.2020 –

Teacher: Prof. Chiara Saffirio

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let V be a closed subspace of \mathcal{H} Hilbert space. Let A be a linear bounded operator on \mathcal{H} such that $A(V) \subseteq V$. Prove that $A^*(V^\perp) \subseteq V^\perp$.

Exercise 2

Let \mathcal{H} be an Hilbert space. Let A be a linear bounded operator on \mathcal{H} with linear bounded inverse A^{-1} . Prove that $(A^{-1})^* A^* = A^* (A^{-1})^* = \text{id}$. Deduce that A^* is invertible and that $(A^*)^{-1} = (A^{-1})^*$.

Exercise 3

Consider the Hilbert space $\mathcal{H} := \ell^2(\mathbb{N})$.

a Define the operator A as

$$(A\alpha)_n = \alpha_{n+1} \quad \forall n \in \mathbb{N}, \quad (1)$$

for any $\alpha = \{\alpha_n\}_{n \in \mathbb{N}} \in \mathcal{H}$.

Prove that A is a well defined linear bounded operator, find its norm and its spectrum.

b Consider A^* the adjoint of A . Show its explicit action and find its norm and its spectrum.

c Define $B := A^* A$. Prove that B is a self-adjoint operator, show its explicit action and find its norm and its spectrum.

Hint: Recall that if T is a linear bounded operator, the spectrum $\sigma(T)$ is a closed set, $\rho(T) \equiv \mathbb{C} \setminus \sigma(T)$ the resolvent of T is defined as

$$\rho(T) := \left\{ \lambda \in \mathbb{C} \mid (T - \lambda \text{id})^{-1} \text{ is a well-defined, linear, bounded operator} \right\}, \quad (2)$$

and that $\sigma(T) \subseteq \overline{B_{\|T\|}(0)}$, where $B_R(0) := \{\alpha \in \mathcal{H} \mid \|\alpha\|_2 < R\}$.

Exercise 4

Consider the interval $I = (a, b) \subseteq \mathbb{R}$ and the Hilbert space $\mathcal{H} := L^2(I)$. Consider $\varphi \in C(I)$ a real valued continuous function with $\|\varphi\|_\infty < +\infty$. Consider the operator T_φ defined for

any $\psi \in \mathcal{H}$ as

$$T_\varphi \psi (x) := \varphi(x) \psi(x). \quad (3)$$

Prove that T_φ is a well defined linear bounded operator and prove that $\sigma(T_\varphi) = \overline{\varphi(I)}$.

Hint: Show first that $\varphi(I) \subseteq \sigma(T_\varphi)$ and use the fact that the spectrum is closed to show that the same is true for the closures. Next, show that $(\overline{\sigma(T_\varphi)})^c \subseteq \rho(T_\varphi)$ to conclude.